优界网

首页 > 产品经理 > “猜你喜欢”是怎么猜中你心思的?

“猜你喜欢”是怎么猜中你心思的?

61

0

0

2015-11-30 00:11:16

志志尾 限

分享一下,又不会怀孕!

本作品为转载作品,版权为作品原作者所有,感谢上传者的分享!

(文/Joseph A. Konstan & John Riedl)如今,到网上购物的人已经习惯了收到系统为他们做出的个性化推荐。Netflix 会推荐你可能会喜欢看的视频。TiVo 会自动把节目录下来,如果你感兴趣就可以看。Pandora 会通过预测我们想要听什么歌曲从而生成个性化的音乐流。

所有这些推荐结果都来自于各式各样的推荐系统。它们依靠计算机算法运行,根据顾客的浏览、搜索、下单和喜好,为顾客选择他们可能会喜欢、有可能会购买的商品,从而为消费者服务。推荐系统的设计初衷是帮助在线零售商提高销售额,现在这是一块儿规模巨大且不断增长的业务。与此同时,推荐系统的开发也已经从上世纪 90 年代中期只有几十个人研究,发展到了今天拥有数百名研究人员,分别供职于各高校、大型在线零售商和数十家专注于这类系统的其他企业。

这些年来,推荐系统有了相当的进展。开始时它们还相对较为粗糙,往往对行为做出不准确的预测;但随着更多的和不同类型的网站用户数据变得可用,推荐系统得以将创新算法应用于这些数据之上,它们迅速得到了改善。今天,推荐系统都是些极其复杂和精专的系统,常常看起来比你自己还要了解你。同时,推荐系统正在向零售网站以外的领域拓展:大学用它们来引导学生选课,移动电话公司靠它们来预测哪些用户有可能转投另一家供应商,会议主办方也测试过用它们来分配论文给审稿专家。

我们两人从推荐系统的早期开始便一直在开发和研究它们,最初是以学术研究者的身份,参与 GroupLens 计划(GroupLens Project)。1992 年起,GroupLens 通过对美国兴趣论坛网站 Usenet 讨论区里的消息进行排序,将用户指向他们可能会感兴趣、但自己尚未发现的话题线索。几年以后,我们成立了 Net Perceptions,这是一家推荐算法公司,在互联网第一次热潮期间(1997 年 - 2000 年),一直处于业界领先地位。有鉴于此,虽然这些公司极少公开谈论他们的推荐系统是如何运作的,我们的经验使我们能够深入了解亚马逊和其他在线零售商幕后的情景。(在本文中,我们的分析是在观察和推理的基础上得出的,不包含任何内部消息)。

下面就是我们所看到的。

推荐算法是怎么“猜你喜欢”的?

来源:recommenderapi.com

已有0人赞过

+1赞

认真评论的都成大咖了

还可输入1000个字

我要评论 我要评论
  • 刚刚
  • 登录优界网 ×